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The Abstraction: Files and Directories

Thus far we have seen the development of two key operating system
abstractions: the process, which is a virtualization of the CPU, and
the address space, which is a virtualization of memory. In tandem,
these two abstractions allow a program to run as if it is in its own pri-
vate, isolated world; as if it has its own processor (or processors); as
if it has its own memory. This illusion makes programming the sys-
tem much easier and thus is prevalent today not only on desktops
and servers but increasingly on all programmable platforms includ-
ing mobile phones and the like.

In this section, we add one more critical piece to the virtualiza-
tion puzzle: persistent storage. A persistent-storage device, such as
a classic hard disk drive or a more modern solid-state storage de-
vice, stores information permanently (or at least, for a long time).
Unlike memory, whose contents are lost when there is a power loss,
a persistent-storage device keeps such data intact. Thus, the OS must
take extra care with such a device: this is where users keep data that
they really care about.

CRUX: HOW TO MANAGE A PERSISTENT DEVICE

How should the OS manage a persistent device? What are the APIs?
What are the important aspects of the implementation?
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2 THE ABSTRACTION: FILES AND DIRECTORIES

Thus, in the next few chapters, we will explore critical techniques
for managing persistent data, focusing on methods to improve per-
formance and reliability. We begin, however, with an overview of the
API: the exact interfaces you’ll expect to see when interacting with a
modern UNIX file system.

38.1 Files and Directories

Two key abstractions have developed over time in the virtualiza-
tion of storage. The first is the file. A file is simply a linear array of
bytes, each of which you can read or write. Each file has some kind
of low-level name, usually a number of some kind; often, the user
is not aware of this name (as we will see). For historical reasons, the
low-level name of a file is often referred to as its inode number. We’ll
be learning a lot more about inodes in future chapters; for now, just
assume that each file has an inode number associated with it.

In most systems, the OS does not know much about the struc-
ture of the file (e.g., whether it is a picture, or a text file, or C code);
rather, the responsibility of the file system is simply to store such
data persistently on disk and make sure that when you request the
data again, you get what you put there in the first place. Doing so is
not as simple as it might seem!

The second abstraction is that of a directory. A directory, like a
file, also has a low-level name (i.e., an inode number), but its contents
are quite specific: it contains a list of (user-readable name, low-level
name) pairs. For example, let’s say there is a file with the low-level
name “10”, and it is referred to by the user-readable name of “foo”.
The directory “foo” resides in thus would have an entry (“foo”, “10”)
that maps the user-readable name to the low-level name. Each entry
in a directory refers to either files or other directories. By placing di-
rectories within other directories, users are able to build an arbitrary
directory tree (or directory hierarchy), under which all files and di-
rectories are stored.

The directory hierarchy starts at a root directory (in UNIX-based
systems, the root directory is simply referred to as /) and uses some
kind of separator to name subsequent sub-directories until the de-
sired file or directory is named. For example, if a user created a di-
rectory foo in the root directory /, and then created a file bar.txt
in the directory foo, we could refer to the file by its absolute path-
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THE ABSTRACTION: FILES AND DIRECTORIES 3
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Figure 38.1: An Example Directory Tree

name, which in this case would be /foo/bar.txt. See Figure 38.1
for a more complex directory tree; valid directories in the example
are /, /foo, /bar, /bar/bar, /bar/foo and valid files are
/foo/bar.txt and /bar/foo/bar.txt. Directories and files can
have the same name as long as they are in different spots in the tree
(e.g., there are two different files named bar.txt in the figure).

You may also notice that the file name in this example often has
two parts: bar and txt, separated by a period. The first part is an
arbitrary name, whereas the second part of the file name is usually
used to indicate the type of the file, e.g., whether it is C code (e.g.,
.c), or an image (e.g., .jpg), or a music file (e.g., .mp3). However,
this is usually just a convention: there is usually no enforcement that
the data contained in a file named main.c is indeed C source code.

Thus, we can see one great thing provided by the file system: a
convenient way to name all the files we are interested in. Names
are important in systems as the first step to accessing any resource is
being able to name it. In UNIX systems, the file system thus provides
a unified way to access files on disk, USB stick, CD-ROM, many other
devices, and in fact many other things, all located under the single
directory tree.
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4 THE ABSTRACTION: FILES AND DIRECTORIES

TIP: THINK CAREFULLY ABOUT NAMING

Naming is an important aspect of computer systems [SK09]. In UNIX

systems, virtually everything that you can think of is named through
the file system. Beyond just files, devices, pipes, and even processes
[K84] can be found in what looks like a plain old file system. This
uniformity of naming eases your conceptual model of the system,
and makes the system simpler and more modular. Thus, whenever
creating a system or interface, think carefully about what names you
are using.

38.2 The File System Interface

Let’s now discuss the file system interface in more detail. We’ll
start with the basics of creating, accessing, and deleting files. You
may think this straightforward, but along the way we’ll discover the
mysterious call that is used to remove files, known as unlink().
Hopefully, by the end of this chapter, this mystery won’t be so mys-
terious to you!

38.3 Creating Files

We’ll start with the most basic of operations: creating a file. This
can be accomplished with the open system call; by calling open()
and passing it the O CREAT flag, a program can create a new file.
Here is some example code to create a file called “foo” in the current
working directory.

int fd = open("foo", O_CREAT | O_WRONLY | O_TRUNC);

The routine open() takes a number of different flags. In this ex-
ample, the program creates the file (O CREAT), can only write to that
file while opened in this manner (O WRONLY), and, if the file already
exists, first truncate it to a size of zero bytes thus removing any exist-
ing content (O TRUNC).
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THE ABSTRACTION: FILES AND DIRECTORIES 5

ASIDE: THE CREAT() SYSTEM CALL
The older way of creating a file is to call creat(), as follows:

int fd = creat("foo");

You can think of creat() as open() with the following flags:
O CREAT | O WRONLY | O TRUNC. Because open() can create a
file, the usage of creat() has somewhat fallen out of favor (indeed,
it could just be implemented as a library call to open()); however,
it does hold a special place in UNIX lore. Specifically, when Ken
Thompson was asked what he would do differently if he were re-
designing UNIX, he replied: “I’d spell creat with an e.”

One important aspect of open() is what it returns: a file descrip-
tor. A file descriptor is just an integer, private per process, and is
used in UNIX systems to access files; thus, once a file is opened, you
use the file descriptor to read or write the file, assuming you have
permission to do so. In this way, a file descriptor is a capability, i.e.,
an opaque handle that gives you the power to perform certain oper-
ations. Another way to think of a file descriptor is as a pointer to an
object of type file; once you have such an object, you can call other
“methods” to access the file, like read() and write(). We’ll see
just how a file descriptor is used below.

38.4 Reading and Writing Files

Once we have some files, of course we might like to read or write
them. Let’s start by reading an existing file. If we were typing at
a command line, we might just use the program cat to dump the
contents of the file to the screen.

prompt> echo hello > foo
prompt> cat foo
hello
prompt>

In this code snippet, we redirect the output of the program echo
to the file foo, which then contains the word “hello” in it. We then
use cat to see the contents of the file. But how does the cat program
access the file foo?
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6 THE ABSTRACTION: FILES AND DIRECTORIES

TIP: USE STRACE (AND SIMILAR TOOLS)
The strace tool provides an awesome way to see what programs

are up to. By running it, you can trace which system calls a program
makes, see the arguments and return codes, and generally get a very
good idea of what is going on.

The tool also takes some arguments which can be quite useful. For
example, -f follows any fork’d children too; -t reports the time of
day at each call; -e trace=open,close,read,writeonly traces
calls to those system calls and ignores all others. There are many
more powerful flags – read the man pages and find out how to har-
ness this wonderful tool.

To find this out, we’ll use an incredibly useful tool to trace the
system calls made by a program. On Linux, the tool is called strace;
other systems have similar tools (see dtruss on Mac OS X, or truss on
some older UNIX variants). What strace does is trace every system
call made by a program while it runs, and dump the trace to the
screen for you to see.

Here is an example of using strace to figure out what cat is
doing (some calls removed for readability):

prompt> strace cat foo
...
open("foo", O_RDONLY|O_LARGEFILE) = 3
read(3, "hello\n", 4096) = 6
write(1, "hello\n", 6) = 6
hello
read(3, "", 4096) = 0
close(3) = 0
...
prompt>

The first thing that cat does is open the file for reading. A couple
of things we should note about this; first, that the file is only opened
for reading (not writing), as indicated by the O RDONLY flag; second,
that the 64-bit offset be used (O LARGEFILE); third, that the call to
open() succeeds and returns a file descriptor, which in this case has
the value of 3.

Why does the first call to open() return 3, not 0 or perhaps 1
as you might expect? As it turns out, each running process already
has three files open, standard input (which the process can read to
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THE ABSTRACTION: FILES AND DIRECTORIES 7

receive input), standard output (which the process can write to in or-
der to dump information to the screen), and standard error (which
the process can write error messages to). These are represented by
file descriptors 0, 1, and 2, respectively. Thus, when you first open
another file (as cat does above), it will almost certainly be file de-
scriptor 3.

After the open succeeds, cat uses the read() system call to re-
peatedly read some bytes from a file. The first argument to read()
is the file descriptor, thus telling the file system which file to read; a
process can of course have multiple files open at once, and thus the
descriptor enables the operating system to know which file a partic-
ular read refers to. The second argument points to a buffer where the
result of the read() will be placed; in the system-call trace above,
strace shows the results of the read in this spot (“hello”). The third
argument is the size of the buffer, which in this case is 4 KB. The call
to read() returns successfully as well, here returning the number of
bytes it read (6, which includes 5 for the letters in the word “hello”
and one for an end-of-line marker.

At this point, you see another interesting result of the strace: a
single call to the write() system call, to the file descriptor 1. As we
mentioned above, this descriptor is known as the standard output,
and thus is used to write the word “hello” to the screen as the pro-
gram cat is meant to do. But does it call write() directly? Maybe
(if it is highly optimized). But if not, what cat might do is call the
library routine printf(); internally, printf() figures out all the
formatting details passed to it, and eventually calls write on the stan-
dard output to print the results to the screen.

The cat program then tries to read more from the file, but since
there are no bytes left in the file, the read() returns 0 and the pro-
gram knows that this means it has read the entire file. Thus, the
program calls close() to indicate that it is done with the file “foo”,
passing in the corresponding file descriptor. The file is thus closed,
and the reading of it thus complete.

Writing a file is accomplished via a similar set of steps. First, a
file is opened for writing, then the write() system call is called,
perhaps repeatedly for larger files, and then close(). Use strace
to trace writes to a file, perhaps of a program you wrote yourself, or
by tracing the dd utility, e.g., dd if=foo of=bar.
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8 THE ABSTRACTION: FILES AND DIRECTORIES

38.5 Reading And Writing, But Not Sequentially

Thus far, we’ve discussed how to read and write files, but all ac-
cess has been sequential; that is, we have either read a file from the
beginning to the end, or written a file out from beginning to end.

Sometimes, however, it is useful to be able to read or write to a
specific offset within a file; for example, if you build an index over a
text document, and use it to look up a specific word, you may end up
reading from some random offsets within the document. To do so,
we will use the lseek() system call. Here is the function prototype:

off_t lseek(int fildes, off_t offset, int whence);

The first argument is familiar (a file descriptor). The second ar-
gument is the offset, which positions the file offset to a particular
location within the file. The third argument, called whence for his-
torical reasons, determines exactly how the seek is performed. From
the man page:

If whence is SEEK_SET, the offset is set to offset bytes.
If whence is SEEK_CUR, the offset is set to its current
location plus offset bytes.
If whence is SEEK_END, the offset is set to the size of
the file plus offset bytes.

As you can tell from this description, for each file a process opens,
the OS tracks a “current” offset, which determines where the next
read or write will begin reading from or writing to within the file.
Thus, part of the abstraction of an open file is that it has a current
offset, which is updated in one of two ways. The first is when a
read or write of N bytes takes place, N is added to the current offset;
thus each read or write implicitly updates the offset. The second is
explicitly with lseek, which changes the offset as specified above.

Note that this call lseek() has nothing to do with the seek op-
eration of a disk, which moves the disk arm. The call to lseek()
simply changes the value of a variable within the kernel; when the
I/O is performed, depending on where the disk head is, the disk may
or may not perform an actual seek to fulfill the request.
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THE ABSTRACTION: FILES AND DIRECTORIES 9

ASIDE: CALLING LSEEK() DOES NOT PERFORM A DISK SEEK

The poorly-named system call lseek() confuses many a student
trying to understand disks and how the file systems atop them work.
Do not confuse the two! The lseek() call simply changes a variable
in OS memory that tracks, for a particular process, at which offset to
which its next read or write will start. A disk seek occurs when a
read or write issued to the disk is not on the same track as the last
read or write, and thus necessitates a head movement. Making this
even more confusing is the fact that calling lseek() to read or write
from/to random parts of a file, and then reading/writing to those
random parts, will indeed lead to more disk seeks. Thus, calling
lseek() can certainly lead to a seek in an upcoming read or write,
but absolutely does not cause any disk I/O to occur itself.

38.6 Writing Immediately with fsync()

Most times when a program calls write(), it is just telling the
file system: please write this data to persistent storage, at some point
in the future. The file system, for performance reasons, will buffer
such writes in memory for some time (say 5 seconds, or 30); at that
later point in time, the write(s) will actually be issued to the storage
device. From the perspective of the calling application, writes seem
to complete quickly, and only in rare cases (e.g., the machine crashes
after the write() call but before the write to disk) will data be lost.

However, some applications require something more than this
eventual guarantee. For example, in a database management sys-
tem (DBMS), development of a correct recovery protocol requires the
ability to force writes to disk from time to time.

To support these types of applications, most file systems provide
some additional control APIs. In the UNIX world, the interface pro-
vided to applications is known as fsync(int fd). When a pro-
cess calls fsync() for a particular file descriptor, the file system re-
sponds by forcing all dirty (i.e., not yet written) data to disk, for the
file referred to by the specified file descriptor. The fsync() routine
only results once all of these writes are complete.

Here is a simple example of how to use fsync(). The code
opens the file foo, writes a single chunk of data to it, and then calls
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10 THE ABSTRACTION: FILES AND DIRECTORIES

fsync() to ensure the writes immediately to disk. Once the fsync()
returns, the application can safely move on, knowing that the data
has been persisted (if fsync() is correctly implemented, that is).

int fd = open("foo", O_CREAT | O_WRONLY | O_TRUNC);
assert(fd > -1);
int rc = write(fd, buffer, size);
assert(rc == size);
rc = fsync(fd);
assert(rc == 0);

38.7 Renaming Files

Once we have a file, it is sometimes useful to be able to give a file
a different name. When typing at the command line, this is accom-
plished with mv command, as follows; in this example, the file foo
is renamed bar:

prompt> mv foo bar

Using strace, we can see that mv uses the system call rename(char
*old, char *new), which takes precisely two arguments: the orig-
inal name of the file (old) and the new name (new).

One interesting guarantee provided by the rename() call is that
it is atomic with respect to system crashes; if the system crashes
during the renaming, the file will either be named the old name
or the new name; no odd in-between or joint state can arise. Thus,
rename() is critical for supporting certain kinds of applications that
require an atomic update to file state.

Let’s be a little more specific here. Imagine that you are using a
file editor (e.g., emacs), and you insert a line into the middle of a file.
The file’s name, for the example, is foo.txt. The way the editor
might update the file to guarantee that the new file has the original
contents plus the line inserted is as follows (ignoring error-checking
for simplicity):

int fd = open("foo.txt.tmp", O_WRONLY|O_CREAT|O_TRUNC);
write(fd, buffer, size); // write out new version of file
fsync(fd);
close(fd);
rename("foo.txt.tmp", "foo.txt");
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THE ABSTRACTION: FILES AND DIRECTORIES 11

What the editor does in this example is simple: write out the new
version of the file under temporary name (foot.txt.tmp), force it
to disk with fsync(), and then, when the application is certain the
new file metadata and contents are on the disk, rename the tempo-
rary file to the original file’s name. This last step atomically swaps
the new file into place, while concurrently deleting the old version of
the file, and thus an atomic file update is achieved.

38.8 Getting Information About Files

Beyond file access, we expect the file system to keep a fair amount
of information about each file it is storing. We generally call such
data about files metadata. To see the metadata for a certain file, we
can use stat() or fstat() system call – read their man pages for
details on how to call them. These calls take a pathname (or file de-
scriptor) to a file and fill in a stat structure as seen here:

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* inode number */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device ID (if special file) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* blocksize for filesystem I/O */
blkcnt_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

You can see that there is a lot of information kept about each file,
including its size (in bytes), its low-level name (i.e., inode number),
some ownership information, and some information about when the
file was accessed or modified, among other things. To see this infor-
mation, you can use the command line tool stat:

prompt> echo hello > file
prompt> stat file

File: ‘file’
Size: 6 Blocks: 8 IO Block: 4096 regular file

Device: 811h/2065d Inode: 67158084 Links: 1
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12 THE ABSTRACTION: FILES AND DIRECTORIES

Access: (0640/-rw-r-----) Uid: (30686/ remzi) Gid: (30686/ remzi)
Access: 2011-05-03 15:50:20.157594748 -0500
Modify: 2011-05-03 15:50:20.157594748 -0500
Change: 2011-05-03 15:50:20.157594748 -0500

As it turns out, each file system usually keeps this type of infor-

mation in a structure called an inode1. We’ll be learning a lot more
about inodes when we talk about file system implementation. For
now, you should just think of an inode as a persistent data structure
kept by the file system that has information like we see above inside
of it.

38.9 Removing Files

At this point, we know how to create files and access them, either
sequentially or not. But how do you delete files? If you’ve used
UNIX, you probably think you know: just run the program rm. But
what system call does rm use to remove a file?

Let’s use our old friend strace again to find out. Here we re-
move that pesky file “foo”:

prompt> strace rm foo
...
unlink("foo") = 0
...

We’ve removed a bunch of unrelated cruft from the traced out-
put, leaving just a single call to the mysteriously-named system call
unlink(). As you can see, unlink() just takes the name of the file
to be removed, and returns zero upon success. But this leads us to a
great puzzle: why is this system call named “unlink”? Why not just
“remove” or “delete”. To understand the answer to this puzzle, we
must first understand more than just files, but also directories.

38.10 Making Directories

Beyond files, a set of directory-related system calls enable you to
make, read, and delete directories. Note you can never write to a

1Some file systems call these structures similar, but slightly different, names, such
as dnodes; the basic idea is similar however.
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THE ABSTRACTION: FILES AND DIRECTORIES 13

TIP: BE WARY OF POWERFUL COMMANDS
The program rm provides us with a great example of powerful com-
mands, and how sometimes too much power can be a bad thing. For
example, to remove a bunch of files at once, you can type something
like:

prompt> rm *

where the * will match all files in the current directory. But some-
times you want to also delete the directories too, and in fact all of
their contents. You can do this by telling rm to recursively descend
into each directory, and remove its contents too:

prompt> rm -rf *

Where you get into trouble with this small string of characters is
when you issue the command, accidentally, from the root directory
of a file system, thus removing every file and directory from it. Oops!
Thus, remember the double-edged sword of powerful commands;
while they give you the ability to do a lot of work with a small num-
ber of keystrokes, they also can quickly and readily do a great deal
of harm.

directory directly; because the format of the directory is considered
file system metadata, you can only update a directory indirectly by,
for example, creating files, directories, or other object types within
it. In this way, the file system makes sure that the contents of the
directory always are as expected.

To create a directory, a single system call, mkdir(), is available.
The eponymous mkdir program can be used to create such a direc-
tory. Let’s take a look at what happens when we run the mkdir
program to make a simple directory called foo:

prompt> strace mkdir foo
...
mkdir("foo", 0777) = 0
...
prompt>

When such a directory is created, it is considered “empty”, al-
though it does have a bare minimum of contents. Specifically, an
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14 THE ABSTRACTION: FILES AND DIRECTORIES

empty directory has two entries: one entry that refers to itself, and
one entry that refers to its parent. The former is referred to as the
“.” (dot) directory, and the latter as “..” (dot-dot). You can see these
directories by passing a flag (-a) to the program ls:

prompt> ls -a
./ ../
prompt> ls -al
total 8
drwxr-x--- 2 remzi remzi 6 Apr 30 16:17 ./
drwxr-x--- 26 remzi remzi 4096 Apr 30 16:17 ../

38.11 Reading Directories

Now that we’ve created a directory, we might wish to read one
too. Indeed, that is exactly what the program ls does. Let’s write
our own little tool like ls and see how it is done.

Instead of just opening a directory as if it were a file, we instead
use a new set of calls. Below is an example program that prints the
contents of a directory. The program uses three calls, opendir(),
readdir(), and closedir(), to get the job done, and you can see
how simple the interface is, which reads one directory entry at a time.

int main(int argc, char *argv[]) {
DIR *dp = opendir(".");
assert(dp != NULL);
struct dirent *d;
while ((d = readdir(dp)) != NULL) {

printf("%d %s\n", (int) d->d_ino, d->d_name);
}
closedir(dp);
return 0;

}

The declaration below shows the information available within each
directory entry in the struct dirent data structure:

struct dirent {
char d_name[256]; /* filename */
ino_t d_ino; /* inode number */
off_t d_off; /* offset to the next dirent */
unsigned short d_reclen; /* length of this record */
unsigned char d_type; /* type of file */

};
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THE ABSTRACTION: FILES AND DIRECTORIES 15

Because directories are light on information (basically, just map-
ping the name to the inode number, along with a few other details), a
program may want to call stat() on each file to get more informa-
tion on each, such as its length or other detailed information. Indeed,
this is exactly what ls does when you pass it the -l flag; try strace
on ls with and without that flag to see for yourself.

38.12 Deleting Directories

Finally, you can delete a directory with a call to rmdir() (which
is used by the program of the same name, rmdir). Unlike file dele-
tion, however, removing directories is more dangerous, as you could
potentially delete a large amount of data with a single command.
Thus, rmdir() has the requirement that the directory be empty (i.e.,
only has “.” and “..” entries) before it is deleted. If you try to delete
a non-empty directory, the call to rmdir() simply will fail.

38.13 Hard Links

We now come back to the mystery of why removing a file is per-
formed via unlink(), by understanding a new way to make an en-
try in the file system tree, through a system call known as link().
The link() system call takes two arguments, an old pathname and
a new one; when you “link” a new file name to an old one, you essen-
tially create another way to refer to the same file. The command-line
program ln is used to do this, as we see in this example:

prompt> echo hello > file
prompt> cat file
hello
prompt> ln file file2
prompt> cat file2
hello

Here we created a file with the word “hello” in it, and called the
file file2. We then create a hard link to that file using the ln pro-
gram. After this, we can examine the file by either opening file or
file2.

2Note how creative the authors of this book are. We also used to have a cat named
“Cat” (true story). However, she died.
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16 THE ABSTRACTION: FILES AND DIRECTORIES

The way link works is that it simply creates another name in
the directory you are creating the link to, and refers it to the same
inode number (i.e., low-level name) of the original file. The file is
not copied in any way; rather, you now just have two human names
(file and file2) that both refer to the same file. We can even see
this in the directory itself, by printing out the inode number of each
file:

prompt> ls -i file file2
67158084 file
67158084 file2
prompt>

By passing the -i flag to ls, it prints out the inode number of
each file (as well as the file name). And thus you can see what link
really has done: just make a new reference to the same exact inode
number (67158084 in this example).

By now you might be starting to see why unlink() is called
unlink(). When you create a file, you are really doing two things.
First, you are making a structure (the inode) that will track virtually
all relevant information about the file, including its size, where its
blocks are on disk, and so forth. Second, you are linking a human-
readable name to that file, and putting that link into a directory.

After creating a hard link to a file, to the file system, there is no dif-
ference between the original file name (file) and the newly created
file name (file2); indeed, they are both just links to the underlying
metadata about the file, which is found in inode number 67158084.

Thus, to remove a file from the file system, we call unlink().
In the example above, we could for example remove the file named
file, and still access the file without difficulty:

prompt> rm file
removed ‘file’
prompt> cat file2
hello

The reason this works is because when the file system unlinks
file, it checks a reference count within the inode number. This refer-
ence count (sometimes called the link count) allows the file system
to track how many different file names have been linked to this par-
ticular inode. When unlink() is called, it removes the link from
the human-readable name being deleted to the given inode number,
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and decrements the reference count; only when the reference count
reaches zero does the file system also free the inode, any related data
blocks on disk, and thus really “delete” the file.

You can see the reference count of a file using stat() of course.
Let’s see what it is when we create and delete hard links to a file. In
this example, we’ll create three links to the same file, and then delete
them. Watch the link count!

prompt> echo hello > file
prompt> stat file
... Inode: 67158084 Links: 1 ...
prompt> ln file file2
prompt> stat file
... Inode: 67158084 Links: 2 ...
prompt> stat file2
... Inode: 67158084 Links: 2 ...
prompt> ln file2 file3
prompt> stat file
... Inode: 67158084 Links: 3 ...
prompt> rm file
prompt> stat file2
... Inode: 67158084 Links: 2 ...
prompt> rm file2
prompt> stat file3
... Inode: 67158084 Links: 1 ...
prompt> rm file3

38.14 Symbolic Links

There is one other type of link that is really useful, and it is called
a symbolic link or sometimes a soft link. As it turns out, hard links
are somewhat limited: you can’t create one to a directory (for fear
that you will create a cycle in the directory tree); you can’t hard
link to files in other disk partitions (because inode numbers are only
unique within a particular file system, not across file systems); etc.
Thus, a new type of link called the symbolic link was created.

To create such a link, you can use the same program ln, but with
the -s flag. Here is an example:

prompt> echo hello > file
prompt> ln -s file file2
prompt> cat file2
hello
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As you can see, creating a soft link looks much the same, and the
original file can now be accessed through the file name file as well
as the symbolic link name file2.

However, beyond this surface similarity, symbolic links are actu-
ally quite different from hard links. The first difference is that a sym-
bolic link is actually a file itself, of a different type. We’ve already
talked about regular files and directories; symbolic links are a third
type the file system knows about. A stat on the symlink reveals all:

prompt> stat file
... regular file ...

prompt> stat file2
... symbolic link ...

Running ls also reveals this fact. If you look closely at the first
character of the long-form of the output from ls, you can see that
the first character in the left-most column is a - for regular files, a d
for directories, and an l for soft links. You can also see the size of the
symbolic link (4 bytes in this case), as well as what the link points to
(the file named file).

prompt> ls -al
drwxr-x--- 2 remzi remzi 29 May 3 19:10 ./
drwxr-x--- 27 remzi remzi 4096 May 3 15:14 ../
-rw-r----- 1 remzi remzi 6 May 3 19:10 file
lrwxrwxrwx 1 remzi remzi 4 May 3 19:10 file2 -> file

The reason that file2 is 4 bytes is because the way a symbolic
link is formed is by holding the pathname of the linked-to file as the
data of the link file. Because we’ve linked to a file named file, our
link file file2 is small (4 bytes). If we link to a longer pathname,
our link file would be bigger:

prompt> echo hello > alongerfilename
prompt> ln -s alongerfilename file3
prompt> ls -al alongerfilename file3
-rw-r----- 1 remzi remzi 6 May 3 19:17 alongerfilename
lrwxrwxrwx 1 remzi remzi 15 May 3 19:17 file3 -> alongerfilename

Finally, because of the way symbolic links are created, they leave
the possibility for what is known as a dangling reference:
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prompt> echo hello > file
prompt> ln -s file file2
prompt> cat file2
hello
prompt> rm file
prompt> cat file2
cat: file2: No such file or directory

As you can see in this example, quite unlike hard links, removing
the original file named file causes the link to point to a pathname
that no longer exists.

38.15 Making and Mounting a File System

We’ve now toured the basic interfaces to access files, directories,
and certain types of special types of links. But there is one more
topic we should discuss: how to assemble a full directory tree from
many underlying file systems. This task is accomplished via first
making file systems, and then mounting them to make their contents
accessible.

To make a file system, most file systems provide a tool, usually
referred to as mkfs (pronounced “make fs”), that performs exactly
this task. The idea is as follows: give the tool, as input, a device
(such as a disk partition, e.g., /dev/sda1) a file system type (e.g.,
ext3), and it simply writes an empty file system, starting with a root
directory, onto that disk partition. And mkfs said, let there be a file
system!

However, once such a file system is created, it needs to be made
accessible within the uniform file-system tree. This task is achieved
via the mount program (which makes the underlying system call
mount() to do the real work). What mount does, quite simply is
take an existing directory as a target mount point and essentially
paste a new file system onto the directory tree at that point.

An example seems useful. Imagine we have an unmounted ext3
file system, stored in device partition /dev/sda1, that has the fol-
lowing contents: a root directory which contains two sub-directories,
a and b, each of which in turn holds a single file named foo. Let’s
say we wish to mount this file system at the mount point /home/users.
We would type something like this:

prompt> mount -t ext3 /dev/sda1 /home/users
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If successful, the mount would thus make this new file system
available. However, note how the new file system is now accessed.
To look at the contents of the root directory, we would use ls like
this:

prompt> ls /home/users/
a b

As you can see, the pathname /home/users/ now refers to the
root of the newly-mounted directory. Similarly, we could access files
a and bwith the pathnames /home/users/a and /home/users/b.
Finally, the files named foo could be accessed via /home/users/a/foo
and /home/users/b/foo. And thus the beauty of mount: instead
of having a number of separate file systems, mount unifies all file
systems into one tree, making naming uniform and convenient.

To see what is mounted on your system, and at which points, sim-
ply run the mount program. You’ll see something like this:

/dev/sda1 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sda8 on /scratch type ext3 (rw)
/dev/sdb1 on /scratch.1 type xfs (rw)
/dev/sda6 on /tmp type ext3 (rw)
/dev/sda3 on /var type ext3 (rw)
/dev/sda7 on /var/vice/cache type ext3 (rw)
/dev/sda2 on /usr type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
AFS on /afs type afs (rw)

This crazy mix shows that a whole number of different file sys-
tems, including ext3 (a standard disk-based file system), the proc file
system (a file system for accessing information about current pro-
cesses), tmpfs (a file system just for temporary files), and AFS (a dis-
tributed file system) are all glued together onto this one machine’s
file-system tree.
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38.16 Summary

The file system interface in UNIX systems (and indeed, in any sys-
tem) is seemingly quite rudimentary, but there is a lot to understand
if you wish to master it. Nothing is better, of course, than simply
using it (a lot). So please do so! Of course, read more; as always,
Stevens [SR05] is the place to begin.

We’ve toured the basic interfaces, and hopefully understood a lit-
tle bit about how they work. Even more interesting is how to imple-
ment a file system that meets the needs of the API, a topic we will
delve into in great detail next.
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Homework

In this homework, we’ll just familiarize ourselves with how the
APIs described in the chapter work. To do so, you’ll just write a few
different programs, mostly based on various UNIX utilities.

Questions

1. Stat: Write your own version of the command line program
stat, which simply calls the stat() system call on a given
file or directory. Print out file size, number of blocks allocated,
reference (link) count, and so forth. What is the link count of
a directory, as the number of entries in the directory changes?
Useful interfaces: stat()

2. List Files: Write a program that lists files in the given direc-
tory. When called without any arguments, the program should
just print the file names. When invoked with the -l flag, the
program should print out information about each file, such
as the owner, group, permissions, and other information ob-
tained from the stat() system call. The program should take
one additional argument, which is the directory to read, e.g.,
myls -l directory. If no directory is given, the program
should just use the current working directory. Useful inter-
faces: stat(), opendir(), readdir(), getcwd().

3. Tail: Write a program that prints out the last few lines of a
file. The program should be efficient, in that it seeks to near
the end of the file, reads in a block of data, and then goes back-
wards until it finds the requested number of lines; at this point,
it should print out those lines from beginning to the end of
the file. To invoke the program, one should type: mytail -n
file, where n is the number of lines at the end of the file to
print. Useful interfaces: stat(), lseek(), open(), read(),
close().

4. Recursive Search: Write a program that prints out the names
of each file and directory in the file system tree, starting at a
given point in the tree. For example, when run without ar-
guments, the program should start with the current working
directory and print its contents, as well as the contents of any
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sub-directories, etc., until the entire tree, root at the CWD, is
printed. If given a single argument (of a directory name), use
that as the root of the tree instead. Refine your recursive search
with more fun options, similar to the powerful find command
line tool. Useful interfaces: you figure it out.
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